Riddle (RMM 2020. Day 1. Problem 3).

Let $n \ge 3$ be an integer. In a country there are n airports and n airlines operating twoway flights. For each airline, there is an odd integer $m \ge 3$, and m distinct airports c_1, \ldots, c_m , where the flights offered by the airline are exactly those between the following pairs of airports: c_1 and c_2 ; c_2 and c_3 ; \ldots ; c_{m-1} and c_m ; c_m and c_1 .

Prove that there is a closed route consisting of an odd number of flights where no two flights are operated by the same airline.

DEF: Given a family (multicet)
$$\mathcal{E}$$
 of sets, an \mathcal{E} -rainbow
set $R \subseteq U \mathcal{E}$ with an injection $\sigma: R \rightarrow \mathcal{E}$.
5.x. $\sigma(e) \ni e \forall e \in R$.

Problem: Given a property P. find smallest m = m(P)s.r. the following holds: For every family S. if |E| = m and every member of E satisfies P, then $\exists a \in -rainbow$ set R with P. Examples O Colorful Carathédory theorem (Bhrany'82). Every family of <u>n+1</u> subsets of Rⁿ each containing R

DEF.
A family
$$\Theta$$
 of cycles is a primed
identical to a cycle on $|\Theta|$ +1 vertices
 Θ Θ can be partitioned into 2.
primed cach Θ . Θ sin. $U\Theta_{1}$, $U\Theta_{2}$
share exactly one vertexe
THM: If a family Θ of per odd cycles in ξ in has no
rainbow odd cycle. then it is a primed caches.
 OR (cannot be a primed caches) has a rainbow
odd cycle.
 $E[\Theta]$ +1
Proof Sketch of THM: Break into 3 cases. Suppose $|V[U\Theta]|$.
Case 1: There exists $K \subseteq \Theta$ sit. $|V(UX)| \leq |K|+1$.
Case 2: Every odd cycle in Θ is Hamiltonian.
 $Case 3:$ For every $K \subseteq \Theta$. $|V(UX)| > |K|+1$.
 and some $Oi \in \Theta$ is not Hamiltonian.
 $Proof of Case 1: \Theta = \{O_1, O_2, \dots, On \}$. Say On is not Ham.
 On V $V = V(K_{n+1}) \setminus SV$.
 On $Oi = V(V_{1}) \setminus VV$.
 $Oi = V(K_{n+1}) \setminus SV$.
 On $Oi = V(V_{1}) \setminus VV$.
 $Oi = V(K_{n+1}) \setminus SV$.
 $Oi = V(K_{n+1}) \setminus SV$.
 $Oi = V(K_{n+1}) \setminus SV$.

Thm fo	1 Every	family of non edge disjoint nonempty subgraphs
- 1 <i>v</i>	r Kn.	no rainbour cycles Roists (The family is linkleaf.
Even	cycles	Cannot improve it beyond 5 n.
Prop:	Every	family of [36-1)]+1 even cycles in Kn
	has a	rainbow even cycle.