Zilin Jiang
Arizona State University
June 23, 2025
Joint work with Hricha Acharya and Benjamin Jeter
Subcubic graphs
maximum degree at most 3
Eigenvalues of adjacency matrix
$\lambda_1 \ge \dots \ge \lambda_n$
Median eigenvalues
$\lambda_h = \lambda_{\lfloor (n+1)/2 \rfloor}, \lambda_l = \lambda_{\lceil (n+1)/2 \rceil}$
Chemistry | Mathematics |
---|---|
Organic molecules | Chemical graphs (connected + subcubic) |
$\pi$-electron energy levels | Eigenvalues |
Highest occupied molecular orbital energy | $\lambda_h$ |
Lowest unoccupied molecular orbital energy | $\lambda_l$ |
Kinetic stability | $\lambda_h - \lambda_l$ |
Computations Most chemical graphs have
median eigenvalues in $[-1,1]$, with single exception
Eigenvalues $-3, (-\sqrt2)^6, (\sqrt2)^6, 3$
Conjecture Median eigenvalues of all but finite chemical graphs are in $[-1,1]$
Optimality
Guo & Mohar constructed infinitely many bipartite chemical graphs with median eigenvalues $\pm 1$
Fowler & Pisanski 2010 Subcubic trees
Mohar 2013 Planar bipartite chemical graphs
Mohar 2016 Bipartite chemical graphs except Heawood
Several other supplementary results
Acharya, Jeter, J., 2025 All chemical graphs except Heawood
For simplicity, only focus on $\lambda_h \le 1$
Take maximum cut $(A, B)$ of $G$
Additional assumption $\lvert A\rvert < \lvert B\rvert$
Observation Maximum degree of $G[B] \le 1$,
and $\lambda_1(G[B]) \le 1$
Cauchy interlacing $\lambda_{1 + \lvert A \rvert}(G) \le 1$, and $\lambda_h(G) \le 1$.
Maximum cut $(A, B)$ satisfies $\lvert A\rvert = \lvert B\rvert$
Idea 1 Move $k$ vertices $C \subset A$ s.t.
$\lambda_k(G[B \cup C]) \le 1$
Cauchy $\lambda_{k + \lvert A \setminus C \rvert}(G) \le 1$, and $\lambda_h(G) \le 1$
Note Most components of $G[B \cup C]$ are independent edges
Goal 1 Finish with tail reducer $C$
Idea 1 Move $k$ vertices $C \subset A$ s.t.
$\lambda_k(G[B \cup C]) \le 1$
Goal 1 Finish with tail reducer $C$
Idea 2 Cut-set of $(A \oplus D, A \oplus D)$ cannot be bigger than that of $(A, B)$
Goal 2 Contradiction through cut enhancer $D$
Goal 1 Finish with tail reducer $C$
Goal 2 Contradiction through cut enhancer $D$
Lemma If $ab$ is an edge of $G[A]$, then degree of $a$ is $3$, or $\{ a \}$ is tail reducer
All arguments are "local"
Positive fraction $\varepsilon n$ middle eigenvalues $\subset [-1, 1]$
Mohar & Tayfeh-Rezaie 2015 Median eigenvalues of every connected bipartite $G$ with maximum degree at most $d$ are in $[-\sqrt{d-2}, \sqrt{d-2}]$, unless $G$ is incidence graph of projective plane of order $d-1$
Optimality of $\sqrt{d-2}$ for $d \ge 4$?
Remove bipartiteness? Mohar $\sqrt{d}$.
Improve to $\sqrt{d-1}$? Improve to $\sqrt{d-2}$?