Median eigenvalues of subcubic graphs

Zilin Jiang
Arizona State University
June 23, 2025
Joint work with Hricha Acharya and Benjamin Jeter

Hricha Acharya
Benjamin Jeter

Subcubic graphs
maximum degree at most 3

Eigenvalues of adjacency matrix
$\lambda_1 \ge \dots \ge \lambda_n$

Median eigenvalues
$\lambda_h = \lambda_{\lfloor (n+1)/2 \rfloor}, \lambda_l = \lambda_{\lceil (n+1)/2 \rceil}$

Hückel Model Theory

ChemistryMathematics
Organic molecules Chemical graphs
(connected + subcubic)
$\pi$-electron energy levelsEigenvalues
Highest occupied molecular orbital energy$\lambda_h$
Lowest unoccupied molecular orbital energy$\lambda_l$
Kinetic stability$\lambda_h - \lambda_l$

Fowler & Pisanski 2010

Computations Most chemical graphs have
median eigenvalues in $[-1,1]$, with single exception

Heawood graph

Eigenvalues $-3, (-\sqrt2)^6, (\sqrt2)^6, 3$

Conjecture Median eigenvalues of all but finite chemical graphs are in $[-1,1]$

Optimality
Guo & Mohar constructed infinitely many bipartite chemical graphs with median eigenvalues $\pm 1$

Fowler & Pisanski 2010 Subcubic trees

Mohar 2013 Planar bipartite chemical graphs

Mohar 2016 Bipartite chemical graphs except Heawood

Several other supplementary results

Acharya, Jeter, J., 2025 All chemical graphs except Heawood

  • 1% of proof for 99% of cases
  • 99% of proof for 1% of cases

For simplicity, only focus on $\lambda_h \le 1$

Proof for 99%

Take maximum cut $(A, B)$ of $G$

Additional assumption $\lvert A\rvert < \lvert B\rvert$

Observation Maximum degree of $G[B] \le 1$,
and $\lambda_1(G[B]) \le 1$

Cauchy interlacing $\lambda_{1 + \lvert A \rvert}(G) \le 1$, and $\lambda_h(G) \le 1$.

Proof for 1%

Maximum cut $(A, B)$ satisfies $\lvert A\rvert = \lvert B\rvert$

Idea 1 Move $k$ vertices $C \subset A$ s.t.
$\lambda_k(G[B \cup C]) \le 1$

Cauchy $\lambda_{k + \lvert A \setminus C \rvert}(G) \le 1$, and $\lambda_h(G) \le 1$

Note Most components of $G[B \cup C]$ are independent edges

Goal 1 Finish with tail reducer $C$

Idea 1 Move $k$ vertices $C \subset A$ s.t.
$\lambda_k(G[B \cup C]) \le 1$

Goal 1 Finish with tail reducer $C$

Idea 2 Cut-set of $(A \oplus D, A \oplus D)$ cannot be bigger than that of $(A, B)$

Goal 2 Contradiction through cut enhancer $D$

Goal 1 Finish with tail reducer $C$

Goal 2 Contradiction through cut enhancer $D$

Lemma If $ab$ is an edge of $G[A]$, then degree of $a$ is $3$, or $\{ a \}$ is tail reducer

54 pages, 170 figures

All arguments are "local"

Positive fraction $\varepsilon n$ middle eigenvalues $\subset [-1, 1]$

Further problems

Mohar & Tayfeh-Rezaie 2015 Median eigenvalues of every connected bipartite $G$ with maximum degree at most $d$ are in $[-\sqrt{d-2}, \sqrt{d-2}]$, unless $G$ is incidence graph of projective plane of order $d-1$

Optimality of $\sqrt{d-2}$ for $d \ge 4$?

Remove bipartiteness? Mohar $\sqrt{d}$.

Improve to $\sqrt{d-1}$? Improve to $\sqrt{d-2}$?