Zilin Jiang
Arizona State University
July 21, 2025
Equiangular lines in $\mathbb{R}^n$ are lines through origin pairwise separated by the same angle
What's the maximum number of
equiangular lines in $\mathbb{R}^n$?
$n$ | 2 | 3-4 | 5 | 6 | 7-14 | ... | 23-41 | 42 | 43 |
max | 3 | 6 | 10 | 16 | 28 | ... | 276 | 276-288 | 344 |
What's the maximum number of equiangular lines in $\mathbb{R}^n$?
Gerzon 1973
At most $\frac{1}{2}n(n+1)$
de Caen 2000
At least $cn^2$
Angles $\to$ 90° as $n\to\infty$
What happens if the angles are held fixed?
What's the maximum number $E_\alpha(n)$ of
equiangular lines in $\mathbb{R}^n$ with a fixed angle $\arccos\alpha$?
Lemmens, Seidel 1973 | $E_{1/3}(n) = 2(n-1)$ for $n \ge 15$ |
Neumann 1973 | $E_{\alpha}(n) \le 2n$, unless $1/\alpha$ is odd |
Neumaier 1989 | $E_{1/5}(n) = \lfloor \frac{3}{2}(n-1) \rfloor$ for $n \ge n_0$ |
Bukh 2016 | $E_{\alpha}(n) \le c_\alpha n$ |
Balla, Dräxler, Sudakov, Keevash 2018 | $E_{\alpha}(n) \le 1.93n$ for $n \ge n_0(\alpha)$ if $\alpha \neq 1/3$ |
Bukh's conjecture on equiangular lines with fixed angle
$E_{1/(2k-1)}(n) \approx \frac{kn}{k-1}$. $E_{1/7}(n) \approx \frac{4}{3}n$.
What's the maximum number $E_\alpha(n)$ of
equiangular lines in $\mathbb{R}^n$ with a fixed angle $\arccos\alpha$?
Conjecture J.–Polyanskii
$E_{\alpha}(n) \approx \frac{kn}{k-1}$, where $k = k(\lambda)$, $\lambda = \frac{1-\alpha}{2\alpha}$.
Spectral radius order $k(\lambda) := $ smallest $k$ such that
$\exists$ $k$-vertex graph $G$ whose adjacency matrix has spectral radius $\lambda$
$\alpha$ | $\lambda$ | $G$ | $k$ | $E_\alpha(n)$ |
$\tfrac{1}{3}$ | $1$ | $2$ | $2n$ | |
$\tfrac{1}{5}$ | $2$ | $3$ | $\tfrac{3n}{2}$ | |
$\frac{1}{7}$ | $3$ | $4$ | $\tfrac{4n}{3}$ |
J.–Polyanskii 2018
True for all $\lambda \le \sqrt{2 + \sqrt{5}}$.
What's the maximum number $E_\alpha(n)$ of
equiangular lines in $\mathbb{R}^n$ with a fixed angle $\arccos\alpha$?
J., Tidor, Yao, Zhang, Zhao 2021 Annals of Mathematics
$E_\alpha(n) = \lfloor \frac{k}{k-1}(n-1) \rfloor$ for $n \ge n_0(\alpha)$ if $k(\lambda) < \infty$;
$E_\alpha(n) = n+o(n)$ otherwise.
J., Tidor, Yao, Zhang, Zhao 2021 Annals of Mathematics
$E_\alpha(n) = \lfloor \frac{k}{k-1}(n-1) \rfloor$ for $n \ge n_0(\alpha)$ if $k(\lambda) < \infty$;
$E_\alpha(n) = n+o(n)$ otherwise.
Spectral radius order $k(\lambda) := $ smallest $k$ such that
$\exists$ $k$-vertex graph $G$ whose adjacency matrix has spectral radius $\lambda$
Equiangular lines in $\mathbb{R}^n$ with angle $\arccos\alpha$
$\Leftrightarrow$ Unit vectors in $\mathbb{R}^n$ with inner product $\pm \alpha$
$\Leftarrow$$\Rightarrow$ Graph $G$, where $u \sim v$ in $G$ iff $\langle u, v\rangle = -\alpha$
s.t. $(1-\alpha) I - 2\alpha A_G + \alpha J \succeq 0$ and rank $\le n$
Equivalently, given $\alpha$ and $n$, find $G$ with max order s.t.
$(1-\alpha) I - 2\alpha A_G + \alpha J \succeq 0$ and rank $\le n$
Example when $\alpha = 1/5$, take $\lfloor (n-1)/2 \rfloor$ copies of
Given $\alpha$ and $n$, find $G$ with max order s.t.
$M := (1-\alpha) I - 2\alpha A_G + \alpha J \succeq 0$ and rank $\le n$
Rank-nullity
$E_\alpha(n) \le n + \mathrm{null}(M)$$\le \mathrm{null}((1-\alpha) I - 2\alpha A_G) + n + 1$
Since $M \succeq 0$, $\lambda := \frac{1-\alpha}{2\alpha}$ could be
$\lambda := \frac{1-\alpha}{2\alpha}$ could be second largest eigenvalue of connected $G$
Switching $v$ to $-v$ in $\mathbb{R}^n$
Balla, Dräxler, Keevash, Sudakov 2018
Can switch so that max degree of $G$ $\le \Delta$
J., Tidor, Yao, Zhang, Zhao 2021
Multiplicity of second largest eigenvalue of an $n$-vertex connected graph of bounded degree is at most $Cn/\log\log n$.
J., Tidor, Yao, Zhang, Zhao 2021
Multiplicity of second largest eigenvalue of an $n$-vertex connected graph of bounded degree is at most $Cn/\log\log n$.
Haiman, Schildkraut, Zhang, Zhao 2022: constructed second eigenvalue multiplicity $\ge C\sqrt{n/\log_2 n}$; Cayley $\ge n^{2/5}$
Multiplicity of second largest eigenvalue $\lambda$ of an $n$-vertex connected graph $G$ of bounded degree is at most $Cn/\log\log n$.
$r = c\log\log n$ and $s = c \log n$
What is the maximum second eigenvalue multiplicity of
an $n$-vertex connected graph of bounded degree?
McKenzie, Rasmussen, Srivastava 2021
For regular graphs, $O(n/\log^c n)$
What is the maximum second eigenvalue multiplicity of
an $n$-vertex Cayley graph of bounded degree?
Gromov, Colding–Minicozzi, Kleiner
Lee–Makarychev: Constant for abelian groups
What is the maximum number of unit vectors in $\mathbb{R}^n$ such that pairwise inner products are either $\alpha$ or $\beta$?
$E_{\alpha, \beta}(n) = $ maximum number of unit vectors in $\mathbb{R}^n$
such that pairwise inner products are $\beta < 0 < \alpha$
Bukh 2005: $E_{\alpha, \beta}(n) = O_{\alpha,\beta}(n)$
Problem Determine $\lim_{n\to\infty} E_{\alpha, \beta}(n) /n$
Conjecture Depend on $k_p(\lambda)$ in terms of signed graphs
where $p = \lfloor -\alpha/\beta\rfloor+1$ and $\lambda = (1-\alpha)/(\alpha - \beta)$
Solved in special cases
Need new insights in spectral graph theory:
Zauner's conjecture 1999
Maximum number of equiangular lines in $\mathbb{C}^n$ is $n^2$
Fixed angle: determine $\lim_{n\to\infty} E_\alpha^\mathbb{C}(n)/n$
Equiangular subspaces: configurations of $k$-dimensional subspaces in $\mathbb{R}^d$ with given pairwise angles